DataSheet39.com

What is TNY264?

This electronic component, produced by the manufacturer "Power Integrations", performs the same function as "Low Power Off-line Switcher".


TNY264 Datasheet PDF - Power Integrations

Part Number TNY264
Description Low Power Off-line Switcher
Manufacturers Power Integrations 
Logo Power Integrations Logo 


There is a preview and TNY264 download ( pdf file ) link at the bottom of this page.





Total 24 Pages



Preview 1 page

No Preview Available ! TNY264 datasheet, circuit

TNY263-268
TinySwitch®-II Family
Enhanced, Energy Efficient,
Low Power Off-line Switcher
Product Highlights
TinySwitch-II Features Reduce System Cost
• Fully integrated auto-restart for short circuit and open
loop fault protection – saves external component costs
• Built-in circuitry practically eliminates audible noise with
ordinary dip-varnished transformer
• Programmable line under-voltage detect feature prevents
power on/off glitches – saves external components
• Frequency jittering dramatically reduces EMI (~10 dB)
– minimizes EMI filter component costs
• 132 kHz operation reduces transformer size – allows use
of EF12.6 or EE13 cores for low cost and small size
• Very tight tolerances and negligible temperature variation
on key parameters eases design and lowers cost
• Lowest component count switcher solution
• Expanded scalable device family for low system cost
Better Cost/Performance over RCC & Linears
• Lower system cost than RCC, discrete PWM and other
integrated/hybrid solutions
• Cost effective replacement for bulky regulated linears
• Simple ON/OFF control – no loop compensation needed
• No bias winding – simpler, lower cost transformer
• Simple design practically eliminates rework in
manufacturing
EcoSmart®– Extremely Energy Efficient
• No load consumption <50 mW with bias winding and
<250 mW without bias winding at 265 VAC input
• Meets California Energy Commission (CEC), Energy
Star, and EU requirements
• Ideal for cell-phone charger and PC standby applications
High Performance at Low Cost
• High voltage powered – ideal for charger applications
• High bandwidth provides fast turn on with no overshoot
• Current limit operation rejects line frequency ripple
• Built-in current limit and thermal protection improves
safety
Description
TinySwitch-II integrates a 700 V power MOSFET, oscillator,
high voltage switched current source, current limit and
thermal shutdown circuitry onto a monolithic device. The
start-up and operating power are derived directly from
the voltage on the DRAIN pin, eliminating the need for
a bias winding and associated circuitry. In addition, the
+
Optional
UV Resistor
Wide-Range
HV DC Input
D EN/UV
TinySwitch-II
BP
S
-
Figure 1. Typical Standby Application.
+
DC Output
-
PI-2684-101700
OUTPUT POWER TABLE
PRODUCT3
230 VAC ±15%
85-265 VAC
Adapter1
Open
Frame2
Adapter1
Open
Frame2
TNY263 P or G 5 W 7.5 W 3.7 W 4.7 W
TNY264 P or G 5.5 W 9 W 4 W 6 W
TNY265 P or G 8.5 W 11 W 5.5 W 7.5 W
TNY266 P or G 10 W 15 W 6 W 9.5 W
TNY267 P or G 13 W 19 W 8 W 12 W
TNY268 P or G 16 W 23 W 10 W 15 W
Table 1. Notes: 1. Minimum continuous power in a typical
non-ventilated enclosed adapter measured at 50 °C ambient.
2. Minimum practical continuous power in an open frame
design with adequate heat sinking, measured at 50 °C
ambient (See Key Applications Considerations). 3. Packages:
P: DIP-8B, G: SMD-8B. For lead-free package options, see Part
Ordering Information.
TinySwitch-II devices incorporate auto-restart, line under-
voltage sense, and frequency jittering. An innovative design
minimizes audio frequency components in the simple ON/OFF
control scheme to practically eliminate audible noise with
standard taped/varnished transformer construction. The fully
integrated auto-restart circuit safely limits output power during
fault conditions such as output short circuit or open loop,
reducing component count and secondary feedback circuitry
cost. An optional line sense resistor externally programs a line
under-voltage threshold, which eliminates power down glitches
caused by the slow discharge of input storage capacitors present
in applications such as standby supplies.The operating frequency
of 132 kHz is jittered to significantly reduce both the quasi-peak
and average EMI, minimizing filtering cost.
April 2005
http://www.Datasheet4U.com

line_dark_gray
TNY264 equivalent
the SOURCE pin. The optocoupler LED is connected in series
with a Zener diode across the DC output voltage to be regulated.
When the output voltage exceeds the target regulation voltage
level (optocoupler LED voltage drop plus Zener voltage), the
optocoupler LED will start to conduct, pulling the EN/UV pin
low. The Zener diode can be replaced by a TL431 reference
circuit for improved accuracy.
ON/OFF Operation with Current Limit State Machine
The internal clock of the TinySwitch-II runs all the time. At
VEN
CLOCK
DMAX
IDRAIN
VDRAIN
PI-2749-050301
Figure 6. TinySwitch-II Operation at Near Maximum Loading.
TNY263-268
the beginning of each clock cycle, it samples the EN/UV pin to
decide whether or not to implement a switch cycle, and based
on the sequence of samples over multiple cycles, it determines
the appropriate current limit. At high loads, when the EN/UV
pin is high (less than 240 µA out of the pin), a switching cycle
with the full current limit occurs.At lighter loads, when EN/UV
is high, a switching cycle with a reduced current limit occurs.
At near maximum load, TinySwitch-II will conduct during nearly
all of its clock cycles (Figure 6). At slightly lower load, it will
“skip” additional cycles in order to maintain voltage regulation
at the power supply output (Figure 7). At medium loads, cycles
will be skipped and the current limit will be reduced (Figure 8).
At very light loads, the current limit will be reduced even further
(Figure 9). Only a small percentage of cycles will occur to
satisfy the power consumption of the power supply.
The response time of the TinySwitch-II ON/OFF control scheme
is very fast compared to normal PWM control. This provides
tight regulation and excellent transient response.
Power Up/Down
The TinySwitch-II requires only a 0.1 µF capacitor on the
BYPASS pin. Because of its small size, the time to charge this
capacitor is kept to an absolute minimum, typically 0.6 ms. Due
to the fast nature of the ON/OFF feedback, there is no overshoot
at the power supply output. When an external resistor (2 M)
is connected from the positive DC input to the EN/UV pin, the
power MOSFETswitching will be delayed during power-up until
the DC line voltage exceeds the threshold (100 V). Figures 10
and 11 show the power-up timing waveform of TinySwitch-II
in applications with and without an external resistor (2 M)
connected to the EN/UV pin.
VEN
CLOCK
DMAX
VEN
CLOCK
DMAX
IDRAIN
IDRAIN
VDRAIN
PI-2667-090700
Figure 7. TinySwitch-II Operation at Moderately Heavy Loading.
VDRAIN
PI-2377-091100
Figure 8. TinySwitch-II Operation at Medium Loading.
5G
4/05


line_dark_gray

Preview 5 Page


Part Details

On this page, you can learn information such as the schematic, equivalent, pinout, replacement, circuit, and manual for TNY264 electronic component.


Information Total 24 Pages
Link URL [ Copy URL to Clipboard ]
Download [ TNY264.PDF Datasheet ]

Share Link :

Electronic Components Distributor


An electronic components distributor is a company that sources, stocks, and sells electronic components to manufacturers, engineers, and hobbyists.


SparkFun Electronics Allied Electronics DigiKey Electronics Arrow Electronics
Mouser Electronics Adafruit Newark Chip One Stop


Featured Datasheets

Part NumberDescriptionMFRS
TNY263The function is Low Power Off-line Switcher. Power IntegrationsPower Integrations
TNY264The function is Low Power Off-line Switcher. Power IntegrationsPower Integrations
TNY264GThe function is Enhanced/ Energy Efficient/ Low Power Off-line Switcher. Power Integrations Inc.Power Integrations  Inc.

Semiconductors commonly used in industry:

1N4148   |   BAW56   |   1N5400   |   NE555   |  

LM324   |   BC327   |   IRF840  |   2N3904   |  



Quick jump to:

TNY2     1N4     2N2     2SA     2SC     74H     BC     HCF     IRF     KA    

LA     LM     MC     NE     ST     STK     TDA     TL     UA    



Privacy Policy   |    Contact Us     |    New    |    Search